skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clemens-Sewall, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Usingin-situmeasurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Models struggle to accurately simulate observed sea ice thickness changes, which could be partially due to inadequate representation of thermodynamic processes. We analyzed co‐located winter observations of the Arctic sea ice from the Multidisciplinary Drifting Observatory for the Study of the Arctic Climate for evaluating and improving thermodynamic processes in sea ice models, aiming to enable more accurate predictions of the warming climate system. We model the sea ice and snow heat conduction for observed transects forced by realistic boundary conditions to understand the impact of the non‐resolved meter‐scale snow and sea ice thickness heterogeneity on horizontal heat conduction. Neglecting horizontal processes causes underestimating the conductive heat flux of 10% or more. Furthermore, comparing model results to independent temperature observations reveals a ∼5 K surface temperature overestimation over ice thinner than 1 m, attributed to shortcomings in parameterizing surface turbulent and radiative fluxes rather than the conduction. Assessing the model deficiencies and parameterizing these unresolved processes is required for improved sea ice representation. 
    more » « less
  3. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) produced a wealth of observational data along the drift of the R/V Polarstern in the Arctic Ocean from October 2019 to September 2020. These data can further process-level understanding and improvements in models. However, the observational records contain temporal gaps and are provided in different formats. One goal of the MOSAiC Single Column Model Working Group (MSCMWG: https://mosaic-expedition.org/science/cross-cutting_groups/) is to provide consistently-formatted, gap-filled, merged datasets representing the conditions at the MOSAiC Central Observatory (the intensively studied region within a few km of R/V Polarstern) that are suitable for driving models on this spatial domain (e.g., single column models, large eddy simulations, etc). The MSCMWG is an open group, please contact the dataset creators if you would like to contribute to future versions of these merged datasets (including new variables). This dataset contains version 1 of these merged datasets, and comprises the variables necessary to force a single column ice model (e.g., Icepack: https://zenodo.org/doi/10.5281/zenodo.1213462). The atmospheric variables are primarily derived from Met City (~66 percent (%) of record, https://doi.org/10.18739/A2PV6B83F), with temporal gaps filled by bias and advection corrected data from Atmospheric Surface Flux Stations ( https://doi.org/10.18739/A2XD0R00S, https://doi.org/10.18739/A25X25F0P, https://doi.org/10.18739/A2FF3M18K). Some residual gaps in shortwave radiation were filled with ARM ship-board radiometer data. Three different options for snowfall precipitation rate (prsn) are provided, based on in-situ observations that precipitation greatly exceeded accumulation on level ice, and accumulation rates varied on different ice types. MOSAiC_kazr_snow_MDF_20191005_20201001.nc uses 'snowfall_rate1' derived from the vertically-pointing, ka-band radar on the vessel (https://doi.org/10.5439/1853942). MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc and MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc use snow accumulation measurements from manual mass balance sites (https://doi.org/10.18739/A2NK36626) to derived a pseudo-precipitation. MOSAiC_Raphael_snow_fyi_MDF_20191005_20201001.nc is based on the First Year Ice (fyi) sites. MOSAiC_Raphael_snow_syi_MDF_20191005_20201001.nc is based on the Second Year Ice (syi) sites. The other atmospheric variables for these files are identical. Oceanic variables are in MOSAiC_ocn_MDF_20191006_20200919.nc and are derived from https://doi.org/10.18739/A21J9790B. The data are netCDF files formatted according to the Merged Data File format (https://doi.org/10.5194/egusphere-2023-2413, https://gitlab.com/mdf-makers/mdf-toolkit). The code 'recipes' that were used to produce these data are available at: https://doi.org/10.5281/zenodo.10819497. If you use these datasets, please also cite the appropriate publications: Meteorological variables (excluding precipitation): Cox et al., 2023 (https://doi.org/10.1038/s41597-023-02415-5) Oceanographic variables: Schulz et al., 2023 (https://doi.org/10.31223/X5TT2W) KAZR-derived precipitation: Matrosov et al., 2022 (https://doi.org/10.1525/elementa.2021.00101) Accumulation-derived pseudo-precipitation: Raphael et al., in review. The following are known issues that will be addressed in future dataset releases: 1. Residual gaps occupy approximately 20% of the data record (see addendum) 2. Some transitions to shiprad downwelling shortwave are unreasonable abrupt 3. MDF format does not currently include a field for point-by-point data source Addendum: For atmospheric variables, below indicates the percentage sourced from each dataset (and the amount missing a.k.a NaN) Air Temperature metcity 0.661943 NaN 0.193333 asfs30 0.134910 asfs40 0.008607 asfs50 0.001207 Specific Humidity metcity 0.658890 NaN 0.196298 asfs40 0.008695 Wind Velocity metcity 0.666334 NaN 0.255003 asfs30 0.068828 asfs40 0.008630 asfs50 0.001205 Downwelling Longwave metcity 0.549417 asfs30 0.241502 NaN 0.209081 Downwelling Shortwave metcity 0.674166 NaN 0.158814 asfs30 0.140794 shipradS1 0.026226 Note that the 21 day gap from the end of Central Observatory 2 to the start of Central Observatory 3 occupies 5.8% of the record. 
    more » « less
  4. Abstract The conductive heat flux through the snow and ice is a critical component of the mass and energy budgets in the Arctic sea ice system. We use high horizontal resolution (3–15 cm) measurements of snow topography to explore the impacts of sub-meter-scale snow surface roughness on heat flux as simulated by the Finite Element method. Simulating horizontal heat flux in a variable snow cover modestly increases the total simulated heat flux. With horizontal heat flux, as opposed to simple 1D-vertical heat flux modeling, the simulated heat flux is 10% greater than that for uniform snow with the same mean snow thickness for a 31.5 × 21 m region of sea ice (the largest region we studied). Vertical-only (1D) heat flux simulates just a 6% increase for the same region. However, this is highly dependent on observation resolution. Had we measured the snow cover at 1 m horizontal spacing or greater, simulating horizontal heat flux would not have changed the net heat flux from that simulated with vertical-only heat flux. These findings suggest that measuring and modeling snow roughness at sub-meter horizontal scales may be necessary to accurately represent horizontal heat flux on level Arctic sea ice. 
    more » « less
  5. Deming, J.; Nicolaus, M. (Ed.)
    As part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), four autonomous seasonal ice mass balance buoys were deployed in first- and second-year ice. These buoys measured position, barometric pressure, snow depth, ice thickness, ice growth, surface melt, bottom melt, and vertical profiles of temperature from the air, through the snow and ice, and into the upper ocean. Observed air temperatures were similar at all four sites; however, snow–ice interface temperatures varied by as much as 10°C, primarily due to differences in snow depth. Observed winter ice growth rates (November to May) were <1 cm day−1, with summer melt rates (June to July) as large as 5 cm day−1. Air temperatures changed as much as 2°C hour−1 but were dampened to <0.3°C hour−1 at the snow–ice interface. Initial October ice thicknesses ranged from 0.3 m in first-year ice to 1.2 m in second-year ice. By February, this range was only 1.20–1.46 m, due in part to differences in the onset of basal freezing. In second-year ice, this delay was due to large brine-filled voids in the ice; propagating the cold front through this ice required freezing the brine. Mass balance results were similar to those measured by autonomous buoys deployed at the North Pole from 2000 to 2013. Winter average estimates of the ocean heat flux ranged from 0 to 3 W m−2, with a large increase in June 2020 as the floe moved into warmer water. Estimates of average snow thermal conductivity measured at two buoys during periods of linear temperature profiles were 0.41 and 0.42 W m−1 °C−1, higher than previously published estimates. Results from these ice mass balance buoys can contribute to efforts to close the MOSAiC heat budget. 
    more » « less
  6. Precise measurements of Arctic sea ice mass balance are necessary to understand the rapidly changing sea ice cover and its representation in climate models. During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we made repeat point measurements of snow and ice thickness on primarily level first- and second-year ice (FYI, SYI) using ablation stakes and ice thickness gauges. This technique enabled us to distinguish surface and bottom (basal) melt and characterize the importance of oceanic versus atmospheric forcing. We also evaluated the time series of ice growth and melt in the context of other MOSAiC observations and historical mass balance observations from the Surface Heat Budget of the Arctic (SHEBA) campaign and the North Pole Environmental Observatory (NPEO). Despite similar freezing degree days, average ice growth at MOSAiC was greater on FYI (1.67 m) and SYI (1.23 m) than at SHEBA (1.45 m, 0.53 m), due in part to initially thinner ice and snow conditions on MOSAiC. Our estimates of effective snow thermal conductivity, which agree with SHEBA results and other MOSAiC observations, are unlikely to explain the difference. On MOSAiC, FYI grew more and faster than SYI, demonstrating a feedback loop that acts to increase ice production after multi-year ice loss. Surface melt on MOSAiC (mean of 0.50 m) was greater than at NPEO (0.18 m), with considerable spatial variability that correlated with surface albedo variability. Basal melt was relatively small (mean of 0.12 m), and higher than NPEO observations (0.07 m). Finally, we present observations showing that false bottoms reduced basal melt rates in some FYI cases, in agreement with other observations at MOSAiC. These detailed mass balance observations will allow further investigation into connections between the carefully observed surface energy budget, ocean heat fluxes, sea ice, and ecosystem at MOSAiC and during other campaigns. 
    more » « less
  7. Vertical heat conduction through young ice is a major source of wintertime sea ice growth in the Arctic. However, field observations indicate that young ice preferentially accumulates wind-blown snow, resulting in greater snow thickness on young ice than would be expected from precipitation alone, and hence greater snow thickness on young ice than climate models represent. As snow has a low thermal conductivity, this additional snow thickness due to redistribution will reduce the actual heat conduction. We present new observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate Expedition which show that young ice rapidly accumulates a snow thickness of 2.5–8 cm, when wind-blown snow is available from the nearby mature ice. By applying a simple redistribution scheme and heat flux model to simulated conditions from the Community Earth System Model 2.0, we suggest that neglecting this snow redistribution onto young ice could result in the potential overestimation of conductive heat flux—and hence ice growth rates—by 3–8% on average in the Arctic in the winter in the absence of climate feedbacks. The impacts of snow redistribution are highest in the springtime and in coastal regions. 
    more » « less
  8. Abstract. The remoteness and extreme conditions of the Arctic make it a very difficult environment to investigate. In these polar regions covered by sea ice, the wind is relatively strong due to the absence of obstructions and redistributes a large part of the deposited snow mass, which complicates estimates for precipitation hardly distinguishable from blowing or drifting snow. Moreover, the snow mass balance in the sea ice system is still poorly understood, notably due to the complex structure of its surface. Quantitatively assessing the snow distribution on sea ice and its connection to the sea ice surface features is an important step to remove the snow mass balance uncertainties (i.e., snow transport contribution) in the Arctic environment. In this work we introduce snowBedFoam 1.0., a physics-based snow transport model implemented in the open-source fluid dynamics software OpenFOAM.We combine the numerical simulations with terrestrial laser scan observations of surface dynamics to simulate snow deposition in a MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) sea ice domain with a complicated structure typical for pressure ridges. The results demonstrate that a large fraction of snow accumulates in their vicinity, which compares favorably against scanner measurements. However, the approximations imposed by the numerical framework, together with potential measurement errors (precipitation), give rise to quantitative inaccuracies, which should be addressed in future work. The modeling of snow distribution on sea ice should help to better constrain precipitation estimates and more generally assess and predict snow and ice dynamics in the Arctic. 
    more » « less
  9. Abstract Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition. 
    more » « less
  10. The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated. 
    more » « less